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I. Introduction 

The description of the interaction of an incoming particle with 
a pa r t i c l e  bound i n  a nuclear system i n  terms of purely r e l a t i v i s t i -  
cal ly  invariant kinematic re la t ions offers  several problems. I n  
general a heur i s t ic  description i s  given i n  the following way. 
presents an incoming nucleon x colliding with a nucleon t of the Fermi- 
sea i n  the 'potential U . B i s  the  binding energy of the pa r t i c l e  t 
i n  the potential .  

Fig. 1 

I n  high energy col l is ions the potent ia l  U which i s  about 60 MeV 
deep for  l o w  energy nucleons decreases and it may be set equal t o  zero 
for several hundred MeV incident energy. 
that the incoming pa r t i c l e  w i l l  have t o  receive momentum from the nu- 
cleus when i t s  energy increases from E t o  E 4- U inside the potential ,  
and both par t ic les  give up momentum t o  the residual nucleus after leav- 
ing the potent ia l  

This simplifies the f ac t  

We w i l l  attempt a description by which the incoming par t ic le  x 
aMser entering the nucleus finds a par t ic le ,  or par t ic le  c luster  t and 
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a residual nucleus No The incident pa r t i c l e  upon entering the nu- 
cleus will see an unbound t and N. Since w e  w i l l  have t o  satisfy 
energy and momentum a t  any instant  the incident par t ic le  will loose 
momentum and energy as a consequence of it impar-ting energy t o  and 
breaking the binding of t and No Also, longitudinal momentum will 
be imparted t o  the nucleus because one cannot satisfy the energy and 
momentum relat ions with 3 vectors of which two are  equal i n  m m t u d e  
and oppositely oriented, as has t o  be the case for the momentum of t 
and the momentum of N i n  the nuclear frame. W e  have 

etnd 

4 - 9  
pt + pN = 0 

Therefore we set ptt + $' = 0 i n  the nuclear fYame S' w h i c h  

moves w i t h  the velocity Bc with respect t o  the laboratory frame 
after the impact with the incident par t ic le .  The motion of S' is  a 
d i rec t  consequence of the unbinding of t and N, If t represents a 
nucleon then 3 would be the Fermi momentum. S 9  provides the  
additional equation which i s  required t o  satisfy energy and momentum.* 

or Et 4- = M which'is not generally t rue  

9 

The second part of the calculation describes the col l is ion between 
the incident pro jec t i le  and t i n  an ordinary two-body system, 

These assumptions separate the problem in to  the following steps: 
(1) A par t i c l e  with mass m i s  incident on a nucleus of mass M, 

The three-momentum i s  3 N i s  at  r e s t ,  P )  

rn 

F2gure 2 

* 
The a d d i t i ~ n a l  degree of freedom could have been obtained by 

se t t ing  Fa = PN I n  that case only t would have taken up a momentum 

& =  &' - 
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The four-momentum i s  

* i + (Ep + M). Total energy i s  Ein = Ep + M Pin 

(2) 

* of the incident par t ic le  

pt of pa r t i c l e  t 

The incident par t ic le  enters the  nuclear f ield and conse- 
quently M s p l i t s  up i n  N and t. The respective fhree-momenta axe 

PO 

pN 

-9 

3 of the residual par t ic le  N 

F i g b e  3 

The four-momentum is 

The calculation w i l l  be carried out i n  a plane. 

pin = po + pt + pN (1) 

A calculation i n  
3-dlmensional space requires f e w  changes. 
be necessary af'terwards i n  the scattering of the incident par t ic le  
rand t, 

The generalization w i l l  only 

I n  t h i s  process momentum had t o  be imparted t o  the nuclear frame. 
The respective quantit ies i n  the nuclear frame are presented i n  Fig. 4, 
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Figure 4 

=+ ' 

$tq is  the momentum of t i n  S' and 

-+ ' i s  the momentum of I i n  S' 

i s  the momentum of the incoming past ic le  i n  S' ,  PO 

pH 4 

The incident par t ic le  has a velocity p'c and S' moves with respect 
t o  the laboratory with velocity Bc. 

This col l is ion wiX1 be described as an ordinary two-body interaction. 
(3) The incident par t ic le  w i l l  then make a coll ision with t. 

X I ,  Derivations 

The first par t  of the calculation involves only the kinematics. We 
wil l  use covariant expressions: 

From step 2: pin = po + pt c pN 

This quantity i s  valid i n  any i n e r t i a l  frame. Therefore, we have 
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or 

According t o  (2) 

- @Pi 2 9 m t  2 + M 2 + 2  

4 st' + pN' = 0 , and we can solve for  Eo. 

(5) 

= Pp 2 + Po 2 - 2ppPo - Pp m2 - 2 .. po2 - m2 - 2EpM 3. 2(Ep + M) 

or 

**. 

Of 2 2- 
A - p p c J E o  - m  = -  EinEo (7) 

- 
r n 2 + a M + M 2  Eo - 

P 

Equation (6) defines A which i s  dependent on the momentum of t but 
not on i t s  direction. 
par t ic le  after the nucleus is dissociated. 
frame. The momentum i s  

Equation (8) presents the energy of the  incident 
E, i s  i n  the laboratory 



Presumably, one knows the momentum ptt  and pN' i n  the nuclear 
frame S t  + Kowever, one does not &ow p and pt i n  the laboratory 
frame. N Consequently, we have t o  calculate pot .  

The invariant quantity pin i s  i n  the laboratory frame, 

9 2  2 
Pp + Ein 

= -  2 
Pin 

In  the nuclear frame S': 

Eot momentum is: 
i s  the energy of the  incident pa r t i c l e  i n  the nuclear freme. I t s  

Po' = 0 (53) 

and 

Be and @'e are the velocit ies of' the incident par t ic le  i n  the 
laboratory and i n  the nuclear frme respectively* 
nuclear frame moves with the velocity 

Consequently, the 

4 2  
y = (1 - B2) 
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How, p and p ' can be transformed 
the weh known Lgrentz transform&ion 

in to  the  laboratory system by 

0' 

(PtjX = Pt '  s in  

Ans*logous equations transform ( p,' ) 

This calculation does not put any constraints on mt. I n  reactions 
of the kind M(x, x t)N, 
pion produced at the moment x enters the nucleus. M could be a nu- 
cleon or a composite nucleus. 

t could have rest mass zero or it could be a 

1x1. Collision of x with t 

This coll ision will 
x and t. The velocity 

be described i n  the center of mass system of 
of the center of mass is  

The transformation of the momentum p for  an elastfc coll ision 
can be written symbolically 

By making a sepmation between the dissociation of the nucleus 
and the two-body collision, we are able t o  consider other processes 
than e l a s t i c  scattering, 
transformations and other subroutines w i l l  have t o  be wri t ten.  

Such have t o  be described by appropriate 
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The matrix for  the.Lorentz transformation i s  

2 -1/2 
K = y - 1, and y = ( 1  - f3 ) . We selected our coordinate system 
such that  

The matrix for  the momentum i s  

P "  g) 
The rotat ion matrix simplifies i n  the particulewr case fo r  a vector 

i n  the XZ plane: 

cos ff cos E 

cos a s in  E 
- s in  QT 

0 .  

cos ct s in  E 
cos a cos € :i: E:: 1 :) (25) 

0 cos ff 0 

0 0 1 

An additions simplification results i f  the rotat ion occurs only 
i n  the XZ plane. 
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0 

- s in  a 
0 

0 
cos a 

0 

0 

s in  a 
0 

cos a 0 

0 I/ 

In  t h i s  particular a = $ i s  the scattering angle. If the 
scattering would be out of the XZ plane, the scattering angle i s  given 
by 

cos = s in (a  + Qun) s i n  Qcm cos e + cos(a + ea) cos eon (27) 

which reduces t o  

cos = cos a for  scattering i n  the XZ plane (28) 

IV. Transformation of the Nuclear Momentum Distribution in to  the 
Experimentally Observed Cross Section 

The momentum distribution i n  the nuclear frame i s  

The t o t a l  of nucleons is: 

I n  an (x, x t )  experiment one w i l l  observe par t ic les  x and t 
i n  the elements of solid angle dill and dn2 i n  an energy int 'erval 
d(El 3. E*) = dE. 
angular and energy distribution of the observed reaction products. The 
observation of the reaction products i s  made  coplanar with the incident 
pa r t i c l e  x. 

We have t o  relate the momentum distribution wkth the 

The problem requires the construction of the Jacobian for the trans- 
format ion : 
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i n  which (E) dQS represents the scattering cross section of 
par t ic le  xmd%h p a h i c l e  t for scattering in to  the sol id  angle dSlsc. 

the cm-system of incoming par t ic le  x and pa r t i c l e  t. 
The first par t  of the calculation will be the  transformation in to  

' :g 

i s  the cm moment 

d (cos X)dpcm (31) 

X i s  the angle with respect t o  the z-axis i n  the cm system, 

The second par t  of the calculation is  the col l is ion of x and t. 
The cross section i s  

I# i s  the scattering angle i n  the em system. Actually the 
scattering occurs *om the angle X i n to  the  angle X 9 I#. The number 
of coll isions per incoming par t ic le  is ,  



d9 
a2n (2 pa 

Z = q ? q @ t  dsz cm 

This  expression has t o  be transformed i n  the laboratory system 
with the variables Ql , Q2 and E. 

sin(X + I.k) Wd (cos X) dpcmdcp 

(33) 

sin(X f 9 )  d (cos ed d(cost e,)dE (34) 

The multiplication of the determinants can be carried out easily. 
One obtains f inal ly:  

3 c 23 
Z = 3- d2n 6;! do pi2 s in  (X + $)(dq)2d  OS 8 d COS 8 dE J 

p t  N d cm 

( 3 5 )  
L 

v. 

J =  

I 
Discussion 

(34 )  

This calculation i s  based on the use of a particular model 



Figure 5 

as presented i n  Figure 53 M breaks up when x enters the nucleus. 
A t  any instant,  all par t ic les  are on the energy shel l .  x gives up 
energy and momentum upon entering the in te rva l  T. 

A quantum mechanical c&,culation would consider t off the 
energy shell i n  the interval  T t o  place t back on the energy shell  
after the collision. The t ransi t ion amplitude is: 

I n  Born approximation we would have: 

y(?%) is the wave function of the par t ic le  t. 

The cross section for the reaction wiU be, 

The 6 function requires energy and momentum conservation. The inter-  
action Hamiltonian V contains a l l  the information about the interaction 
of t and x. 
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The kinematic calcula%ion replaces this interaction by an experi- 
mental. scattering cross section between t and x, 

The summation over all different possible scatterings have t o  be 
carried out, e.g., the diagram of Fig, 6 contributes i n  the sme way 
as the diagram of Fig. 5. 

Figure 4 

The cross section of x e las t ica l ly  scattered from t which i s  
now a composite par t ic le  has t o  be included. 

The calculation i s  not limited t o  scatterings of an incoming par t ic le  
with a nucleon or nuclear cluster.  Instead t may well be generated as 
a pion or a photon 

Figure 7 

Actually the diagram of Fig. 7 i s  not ent i re ly  correct for the de- 
x gives up the energy for  the produc- scription of the process. Since 

t ion the d i w m  is as follows: 



X 

Figare 8 

A s m a l l  change i n  the program could be made i n  order t o  have N 
sdattered by t as represented i n  Fig. 9.  A statement which inter-  
changes B and t before the scattering would affect  this. 

% 

Figure 9 

The spectrum for  t i n  any of the processes described above could 
be fed t o  the computer. I f  t i s  a nucleon i n  the nucleus one could 
require t o  be the momentum distribution of a par t ic le  i n  a nuclear 
shell. If t i s  a photon one should assume 8, bremsstrahlung spectrum. p i  

Finally one could read i n  a table of scattering cross section and 
an additional very simple subroutine could calculate the f ina l  resu l t  
for the reaction cross section. 

V I .  Computer Bogram 

Two programs are  included i n  the appendlx. The first program cal- 
culates tables for  the liinematic quantit ies for a M(x, x t)N reaction. 

That calculation i s  separated i n  two parts: 
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1. The separation o f t h e  nucleus M i n to  t and N. 

2. The Lorentz transformation in to  a cm frame of t and x, 
and a rotet ion of t he  four-momenta corresponding t o  a scattering by an 
angle \k. The print-out i s  i n  the main program. 

The other program calculates i n  addition t o  the kinematic quantit ies 
the Jacobian for the transformation from the nuclear system t o  the lab- 
oratory system, 

This calculation i s  separated i n  the  following parts: 

1. The,main program which contains the read and write statements, 
the increments for the nuclear momentum and the angle of the nuclear 
momentum with respect t o ' t h e  incoming direction. 
increments for the  calculation of the Jacobian. 

It also contains the 

2. A subroutine which treats the  transformation of the lab-system 
in to  the nuclear system. It calculates the formulas 7 through 12. 

3. A subroutine which treats the dissociation of the nuclear system. 
It calculates the formulas up t o  20. 

4. .A subroutine which calculates the scattering of x and t. 

5 A subroutine which multiplies 4 dimensional complex matrixes 

The calculation of the Jacobian i s  effected by carrying out s m a l l  
variations i n  p i  , 0' and q. One calculates then the variations i n  
01 , Q2 and E* 

VII . Final Results 

The calculations on the D(p, 2p)n reaction have been carried out as 
an example, The inmementos of opt 0' and $ were varied i n  the range 
from 0.5 t o  2 MeV and O , 5  t o  2 respectively. The variations i n  J 
were mostly within the range of the required precisiog 

For t h i s  reason the values for 
extrapolation. 
nuclear momentum. Figure ll presents 

However, large variations were encountered for  0 = 0 
J at these angles were obtained by 

Figure 10 shows the symmetric angle of scattering vs the 

+OS $19 COS Q ~ ,  E) 
a cds 0' , cos (x f $),q 

as a f'unction of Q! . 
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The momentum p i  i s  a parameter and the scattering angle 
From th i s  figure the determinant for 
Fig. 1 2  and Fig. 13 present the determinant as a function of p".  
shows the value of 

= 90'. 
8' = 0' and 8' = 180'. is determined. 

Fig. 14 t 

acr( goo> 
cm 

as a function of E. F i n d l y  Fig, 15 presents the complete expression, 

12 
 COS Qi COS (X + ~ J I ) ,  p t ' )  

T = a  pt dnQ, (cos Ql, cos Q2, E )  

for $ = goo, and 8' = 0' and 8' = 180'. To obtain the experimentally 
observable dis t r ibut ion one has t o  assume a momentum dis t r ibut ion for the 
proton inside the deuteron 

w h i c h  has t o  be multiplied with T, 

a2n 
Pt % 

ZOd&l1 dJz2 dE = a 7  T d( COS Q1) drp d( COS Q2)@ dE 

This calculation neglects a l l  f i n a l  state interactions and it neglects 
the absorption of x and of t on i t s  passage through the nucleus. 
Known reaction cross sections m a k e  possible the application of a correction 
for  the absorption. However, the f i n a l  state interac2;ion cannot be 
corrected for  i n  a s h p l e  manner. 
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A L L  ENERGIES AND M A S S F S  A R E  TO B E  R E A D  IN IN G E V  
I N C I D E N T  PROTON K I N E T I C  ENERGY E N I N  
A C.LIJSTER CAN B E  ANY S I J B U N I T  OF THE TARGET NUCLEUS 
TARGET CLCJSTER MOMENTIJM P T '  PTGT 
I N C I D E N T  PROTON ENERGY EP E N I N M  
I N C I D E N T  TOTAL ENERGY E I N  E N I N T  
I N C  I DENT PROTON M(JMENTIJM PP PMOMI 
TARGET CLIJSTEK ENERGY E T '  ENTGT 
R E C O I L I N G  RESIDl lJAL NUCLEtJS ENERGY E N '  ENRC 
I N C I D E N T  PROTON MOMENTllM A F T E R  BREAK UP OF NUCL. PO PBK 
I N C I D E N T '  PROTON ENERGY AFTER BREAK IJP OF NIJCL 0 I N  MOV FKAMF EI'II'~OV 
I N C I D E N T  PROT. MOM. AFTER BREAK UP OF NUCL. I N  MOV F K A k E  PMf lV  
BETA I N  L A B  FRAME B E T 1  
R E T A '  I N  MOVING FRAME BETM 
BETA OF MOVING FRAME RETFR 
THETA I N  MOVING FRAME THTG 
GAMA OF MOVING FRAME G A M  
YOMENTUM OF TARGET CLUSTER BEFORE C O L L I S O N  P T  PT 

ENERGY OF R E C O I L  I N  L A B  FRAME EN ENN 

I M P L I C I T  R E A L a 4 ( M )  , 

. THETA I N  L A B  FRAME THT 

ENKTOTDENKTTENKTM ARE THE M I N T  INCREI"IENT, AND M A X  N l E L  MOMENTA 

COMMON 
1 T PCMEN 

SCAN 9 PBK 9 P TZ 
9 MAS I N  

P TX 7 ENK 9 EN T 9 F I N EN 9 F I T  EN 9 FA N G  9 FANG2 ,F INMX 7 F I b 'hZ  

1 REA [I ( 5 I 10 

READ ( 5 11 I ENKTQ? DENKT9 ENK TM 
R E A D ( 5 9 1 1 )  T H T G O ~ D T H T G T T H T G M  
READ ( 5 T 11 ) S C A  1\10 t OSCAN TSCANM 

CIR I T E ( 6 9 1 2 1 EN I P! T M A S  I N T HAS TG T h A  SC L 9 MAS R 

E N 1  N ,MAS I N T  MASTGT MAS R 7 MASCL 
10 F O R M A T ( 5 F l O . 5 )  

11 F O R M A T ( 3 F 1 0 . 5 )  

1 2  FORMAT ( 1. H1 T ' K I NEMA T I C S  1 8 H  I N C I D E N T  ENERGY = 
1 F 1 0 . 5 /  1 6 H  I N C I D E N T  MASS H TARGET MASS = F10.5 
2 /  1 5 H  MASS CLUSTER = S R E S I D U A L  NUCLEUS = F 1 0 . 5 )  

EN I NM=ENI RI+MAS I N 
EN I NT= EN INM+MAS TG 
P MOM I =S OR T EN I N**2 +2 0 %'MAS I N*E N I N 1 

1 5  

PTGT=ENKTO 
PTGT=PTGT-DENK T 
P TG T= P TG T+ D'E NK T 
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MOV**2-MASIN**2 1 

R ETM=PNOV/ENMOV 
B E T F K = ( R E T I - B E T M ) /  (1 00 
GAM=SORT( 1 .O/ ( 1  ,O-B ETFRqc*2 

EX=SORT(PX**2+MASIN**2  1 

ENM OK = ( EN MO V- MA S I N 1 *YO 0 

THTG=THTGCE-DTHTG 

PX=PMOV+BE TFR*:GAM* (GAM*B ETFR* PMOV/ ( 1 oO+GAM 1 +ENMOV 1 

ENRCK=(FNRC-MASR)* lOOOo 

E XK = ( E X- MA S I fu ) 1 00 0 0 

19 THTG= ( TH TG+D-THTG 1'63 141 5 9 3 /  1 80 00 
P T Z = P T G T a ~ C O S ( T H T G ) + R E T F R a G A M * ( G A M * B E T F R ~ P T G T * C O S  ( T H T G )  / (  l.O+GAI"l)+ 

1 ENTGT 1 
PTX=PTGT*S I N ( THT 
PT=SQKT(  PTZ**2+PTX**2 1 
I F ( PTX e FQ .c) 00 SAND 0 P TZ 
T H T z A T A N 2  ( PTX,PTZ 1 

1 

- ENT=SORT( PT**2+MASCL**2 ) 
PNX=PTGT*S I N ( 3 0 1 4 1 5 9 3 + T H T G  
PNZ=PTGT*COS(3,141593+THTG ETFK*PTGT*  

THTG) / (1 .O+GAM 1 + E N R  
oAND.PNZoEBo0.0 )PNZ 

THNzATAN2 ( PNX, PNZ 1 
PN=SORT (PNZa%:k2+ 
ENN=SQRT (PN*:k2+ 
ET=ENN+ENT+ENK 
T H T = l 8 0  O* TH T/ 3 e 1 
THTG=lRO .0*THTG/ 3 0 

TH N =  1 80 e 0 * TH N/ 3 1 41 5 9 3 
FNTK= (ENT-MASCL 14'1000 * 0  . 
ENKK=(  ENK-MAS I N  1 *l 
ENTGK=( ENTGT- 
E N N K = ( E  
liJR I TE ( 6  

- 
189 FORMAT(1HO'  CLlJST K E K I N  E REG INC E MOV B E T A  I N  BETA M O V  

l R E T A  FR P COLL EN ' 1  
W K I T E ( 6 ? 1 8 )  

( F  
19 
HT) REC E N  TOT E 

THFTA C L  A N d L E ' R E C  ' 1  
NKK THTG, ENTK ENNK ,ET ,THT ,THN 

191 FORMAT INC M MOV INC TGT ri 

ONI,PTGT,PBK,PMOV,PX,PT?PTX,PN , 
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F I NE N = ( F I NE N- MA S I N 1 *l 0 0 0 0 0 
F I T E N = ( F I T E N - M A S C L  )*100000 
PCMEK=( PCMEN-MAS IN-MASCL )*lo00 m O  
I F ( M A S C L o N E o O . 0 )  GO TO 140 
P L A B E = (  ( P C M E N W  
GO TO 141 

140 C n N T I N l J F  

141 C O N T I N U F  
P L A B E = (  (PCMEN**2-MAS I ~ l ~ ~ 2 ~ M A S C L ~ * Z ) / ( Z o O ~ M A S C L ) - M A S I I \ l ~ ~ l O O O ~ O  

WKI TE  ( 6  , 31 ISCAN, FANG, F I N E M  
FORMAT ( F 7  02 9 

I T E  N 9 TOT 9 T E E 9 PC MEK T P L A b E 
31 

I F (SCAN. L E  .S 
SCA N=SCANO 

I F  ( T H T G  .L E, THTGM )GO TO 19 
I F ( P T G T . E B o O o O ) G O  TO 1 5  

THTGsTHTGO 
I F  ( P T G T  

100 C O N T I N U  
' G O  TO 1 

END 
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SUBROUTINE SCATT 
I M P L I C I T  C O M P L E X * 8 ( A )  
COMHflN SCANIPBK TPT 

1 A R O T ( 4 , 4  T A F  I N M ( 4 9 4  
RETAX=-PTX/ ( E N K + E N T )  
BETAZ=- ( PBK+PTZ 11 ( ENK+E 
R E TS 13 =B ET A Z **Z +R E TA X* 
APK (1 7 1  )=(OoO 70 00 ) 
A P K ( 2 r l  )=(0.0~0.0) 
A P K ( 3 , 1 ) =  CMPLX(O.OqPRK) 
APK ( 4 7 1  )=CMPLX ( ENK 10 00 1 
A P T ( 1 7 1 1 =C MP L X ( 0  00 7 P TX 
A P T  ( 2  r l  ) =  ( 0  00 10 00 ) 
A P T  ( 3 7 1 1 =C MPLX ( 0  00 T 

/ \ k ' T ( 4 ~ 1  ) = C M P L X ( E N T q  
DO 5 I P z l ~ 4  

. DO 5 J P = 2 ? 4  
APK ( I P ,J P 1 = (  0 00 90 00 

5 A P T ( I P , J P ) = ( O .  
GA MMZ1.0 / S  OR T ( 
HAMMzGA MM-1.0 
I NDEX=O 

10 A A  ( 1 7 1 1 =C MPL X ( 1 e 0  +HAMM*B ETA X**Z/B E TS Q 70 00 I 
A A  (112 ) = ( O  00 90.0 
A A  4 1 7 3 1 =C MPL X ( 8 E 
A A ( 1 7 4  1 =CM PL X ( 0  
A A  ( 2  
A A  ( 2  7 2  I =  (1 00 ,O 0 0  

.AA ( 2  73 I = (  O 0 0  T O  0 0  

1 1 = ( 0 00 10 00 1 
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S U B R O I I T I  N E  M M U L T  ( A A  ,AB r A C  1 
C P R O G R A M  M U L T I P L I E S  THE +DIM. M A T R I C E S  A A ( I A 9 J A )  A N D  A ~ ) ( I H I J B )  

I M P L  IC I T  C O M P L E X W  ( A  1 
T)IMENSIT)N A A ( 4 , 4 ) , A 8 ( 4 , ~ ) , A C ( 4 , 4 )  

00 10 J R = l t 4  
A C  ( I A  VJR )=AA ( I A  7 1  1 *AB (1 ,JR )+AA ( I A  92 ) * A B  ( 2 7 J R  ) + A A  ( I A 7 3 ) + : A H  ( 3 ~ J f i  ) +  

DO 10 I A = l T 4  

1 A A  ( I A  7 4  ) *AB (47JB 1 
10 C O N T I N U E  

R E T U R N  -. 
E N D  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 

ALL,ENERGIES AND MASSES*ARE. TO B E  READ IN IN GEV 
I N C I D E N T  PROTON K I N E T I C  ENERGY E N I N  
A CLUSTER CAN B E  ANY S U B U N I T  OF THE TARGET NUCLEUS 
TARGET CLUSTER MOMENTUM P T '  PTGT 
I N C I D E N T  PROTON ENERGY EP E N I N M  
I N C I D E N T  TOTAL ENERGY E I N  E N I N T  
I N C I D E N T  PROTON MOMENTIJM PP PMOMI 
TARGET CLUSTER ENERGY E T '  ENTGT 
R E C O I L I N G  R E S I D U A L  NUCLEUS ENERGY E N '  ENRC 
I N C I D E N T  PROTON MOMENTUM AFTER BREAK UP OF NUCLo P O  PBK 
I N C I D E N T  PROTON ENERGY AFTER BREAK UP OF N U C L a I N  MOV FRAME ENMOV 
I N C I D E N T  PROT. MOM, AFTER L o  I N  MOV FRAME PMOV 
BETA I N  L A B  FRAME B E T 1  
R E T A I  I N  MOVING FRAME BETM 
BETA OF MOVING FRAME BETFR 
THETA I N  MOVING FRAME THTG 

MOMENTUM OF TARGET C L U  PT PT 
THETA I N  L A B  FRAME 
ENERGY OF R E C O I L  I 
I M P L  IC I T  R E A L * 4 (  M 1 
COMMON MAS I N t M A S T G  

. GAMA O F  MOVING FRAME GAM 

N MOV t PM OV t BE T I t B E f M  t 

1 P T v T H T  
2 r V R E L  

PNX,PNZ 7 THN, PN 7 ENN, ETpPX, E X  ,F INMX, FIPIMZ t PMOM I 

1 R E A D ( 5 r l O ) E N I N , M  MAS TG 
10 F O R M A T ( 5 F l O . 5 )  

R E A D ( 5 1 1 1  ) E N K T 0 9  9 ENK T 
R E A D ( 5 , l l )  THTGO,DTHTG,THTG 
READ ( 5 ~ 1 . 1  I S C A  NO DSCAN ,SCANM ' 

R E A D ( 5 , 1 1 ) P S M A L , T S M A L , S S M A L  
11 F O R M A T 1 3 F l O o 5 )  

" MASR=MASRsMAS I N  read b k .  A M V .  

T H T G 0 = T H T G 0 '60 e 0 1 7 4 5 32 9 2 
DTHTG=DTHTG;kO . O l 7 4 5 3 2 9 2  5 

S C A  I\IO=SC A NO*O ,O 1 7 4 5 3 2  9 2  5 
THTGM=THTGM'$O 00 17 4 5  32 9 2  5 

DSCAN=DSCAN*O 001 7 4 5 3 2 9 2  5 
SCA NM=SC ANM*O e 0 1  7 4 5 3 2  92 5 
TSMA L=TSMAL *O 00 1 7 4 5  3 2 9 2  5 
S S MA L=SS MA L'JO e 0  1 7 4 5 3 2 . 9 2  5 
WRITE ( 6  912 1 EN I N ,  MAS I N  MAS TG, MASCL 9 MASR 

1 2  F O R M A T ( l H 1  , ' K I N  I D E N T  ENERGY = 
1F1005/ 16H I N C I D E N  ET MASS = F1O.5  
2/ 1 5 H  MASS CLUSTER DUAL NUCLEUS = F10.5) 

EN I NM=ENI N+MAS I N 
ENINT=ENINM+MAS 

PTGT=ENKTO 
PTGTzPTGT-OENKT 

PMOM I =SORT ( EN I N**2+2 eO*MAS I N*EN I N  1 
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1 5  PTGT=PTGT+OENKT 
C A L L  NUCSYS ( PTGT, ENK PBK TRETFRTENTGT,  ENRC 1 
THTG=THTGC)-OTHTG 

19 THTG=THTG+DTHTG 
C A L L  D I S S K  (PTGT, THTG,RETFR,ENTGT, ENRC ,PTZ,PTX,ENT). 
ENTI(=( ENT-MASCL ) * l O O O a O  
€ N K K = ( E N K - M A S I N ) * l O O O  a 0  
ENTGK=( ENTGT-MASCL )* l r )OO a 0  

ENNK=(ENN-MASR)*LOOOaO 
ENRCK=( ENRC-MASR)*lOOO a 0  
E NM OK = ( EN MO V- MA S I N 
E X K = (  EX-MAS I N  ) * l O O O * O  
T H T G A s T H T G s 5 7  a 2 9  57795 
T H N A = T H N * 5 7 . 2 9 5 7 7 9 5 1  
THTA'=TH T* 57 a29577951 

* lo00 0 

ET=ENN+ENT+ENK 
WRITE ( 6  9 1  10 IPMOMI  ,P TGT 9 ENTGK 9THTGA 9 PN, ENNK 9 THNA TB ETFR T ET 

110 F O R M A T ( 1 H O ' I N C O M I N G  MOMENTlJM = ' F l o e 4  / 
1 1 9 H  CLUSTER MOMENTUM=* F l o e 4 1  17H CLUSTER ENERGY= F 7 . 2 ~  8H ANGLE 
%= F b a l  / 1 8 H  R E C O I L  MOMENTUM= F 1 0 e 4 ~  1 6 H  R E C O I L  ENERGY= 
3 F 7 . 2 ~  8H ANGLE = F 6 a l /  1 8 H  NUCLEAR S Y S  B E T A =  F 1 0 . 4 ~  
4 1 5 H  TOTAL ENERGY= F 1 O a 5 ~  4H GEV I 

b l R I T E ( 6 ~ 1 9 1  I 
191 FORMAT(1HO'  I N C  MOM C L S T  MOM BR I N C  M MOV I N C  M MOV I N C  TGT M 

1 0 M  TGT MOMX REC MOM 4 )  

W R I T E ( ~ , ~ ~ ) P M O M I , P T G T , P B K I P M O V , P X , P T , P T X T P N  

WR I T E ( 6 9 35 I 
2 1  F O R M A T ( 8 ( F 9 - 4 r l X ) )  

3 5  FORPlAT4 lH  ' TOT EN MOM TR S Q  CaCM EN CM REL VEL COLaCM AN 
1 X Y  L A B  ENERG ' 1  

I K = O  
SCAN=SCA NO-DSCAN 

20 SCA N=SC AN+DSCA N 
CALL SCA TT ( P TX 7 PBK 9 ENK 9 ENT 9 P T Z  *SCAN 9 F I NE N, F I TEN 9 FANG 7 FA NG2 t 

1 PCMEN T C  MA N 1 
TOT=F I N E N + F I  TEN+ENN 
T E E=- ( P MU M I  **2 +F I NMX**2 +F I NMZ**Z-2 e 0  Y6PMOM I* F I NMZ I + ( EN I NM-F I N EN I '$*2 
P C M EK = ( PC M EN- MA S I N-MA S C L 1 9 1 00 0 a - 
VEREL=VREL 
I F ( M A S C L . N E a O a 0 )  GO TO 140 
PLABE= ( (PCMEN**2-MASI N**2-MASCL**2 I /  ( 2  aO*MAS I N  1 1 *lo00 a 0 
GO TO 141 

140' C O N T I N U E  

141 C O N T I N U E  
P L A B E = (  ( PCMEN**2-MAS IN**Z-MAS rO *MASCL )-MAS I N 1 * 1000*0 
F I N E K = 1 0 0 0  a 0  * ( F I N E W  MAS I N 1 
F I T EK=lOOO a O *  ( F I TEN-MA SCL 1 
CMAA=CMAN*57 a29577951 
F N G A = F A N G * 5 7 e 2 9 5 7 7 9 5 1  
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FAA2AzFANG2 *57 
S C NA =SCA N* 57 2 9 577 951 
I F ( I K o E O , l )  GO TO 50 
WR I T E ( 6 9 36 1 TOT 

36 F O R M A T ( h ( F 9 . 4 9 2 X I  I 
b ' R I T E ( 6 9 3 0  I 

29 57 79 51  

9 TE E 9 PC MEK 1 VER EL t C  MAA 9 PLA 8 E 

30 FORMAT(1HO'  CM ANGLE LOANGLE 1 ENER 1 LOANGLE 2 ENER 2 D E T  
1. TRANSF. ' 1  

I K = l  

SCANA=SCA N+SS MAL 
50 CONTINUE 

C A L L  SCATT ( PTX,PBK ,ENK 9 ENT9 PTZ, SCANA 9 F I N A t  F I T A  9 F A N A t  FAN2A T 

1 PCMEA ,C MA NA 
DFADS=(COS ( F A N A ) - C O S ( F A N G )  ) / (COS(CMAN+SCAN) -COS (CMAN+SCANA) )  
0 F2 DS = ( COS ( FA N2A 1 -C OS ( FA N G2 1 1 / ( C OS ( C MA N+S CA N 1-C OS (C M AN+S CAN A 1 
P TGTC = PT GT +P S MAL 
C A L L  NUCS YS ( P TGTC 9 ENKC 9 PBKC 9 BE TC 9 ENTGC 

C A L L  S C A T T (  PTXC 9PBKC 

DFEDP=(  F I N C + F I T C - F I  N E N - F I T E N  I /  PSMAL 
I IFADP=(COS ( F A N C ) - C O S ( F A N G )  I / P S M A L  
D F 2 D P = ( C O S ( F A N 2 C  ) - C O S ( F A N G 2 )  ) / P S M A L  
THTB = THT G+ TS M A L  

P TGTB =PS MA L 

EN RCC 
. C A L L  D I S S O C ( P T G T C , T H T G T B E T C , E N T G C , E N R C C t P T Z C r P T X C t E N T C )  

ENKC 9 ENTC 9 PTZC ySCAN9 F I N C  9 F I T C  9 FANC 9 

1 FA N2C 9 PC MEC v C MA NC 1 

IF (PTGT.NEoOeO)GO TO 1 5 0  

C A L L  NUCSYS (PTGTB,ENKB9PBKB,BETB,fNTGB,ENRCB) 
CALL D I S S ~ C ( P T G T B I T H T R I B E T B , E N T G B ~ E N R G B , P T Z B T P T X ~ T E N T B )  
CA L L 

D F E D T = (  F INB+FITB-F INC-F ITG! , ) /  (COS(THTG) -COS (THTB ) I  

SCAT T ( PTXB 9 PBK B 9 ENKB 9 ENTB , PTZB SCA N 9 F I NB 9 F I TB 9 FAN B 9 FAN 2 B 9 

1 PCMEB 9CMANB 1 

DFA DT= (C OS ( FA NB 1-C OS ( FA NC 1 / ( COS ( THTG 1 -C OS ( THTB 1 1 
DF2DT= (COS ( F A N 2 B  )-COS ( FAN2C 1 I /  (COS (THTGI -COS (THTB 1 )  
GO TO 1 5 1  

150  C A L L  DISSOC ( P T G T , T H T B ~ B E T F R , E N T G T ~ E N R C T P T Z B ~ P T X B ~ E N T B )  
CALL SCA TT ( P TXB 9PBK 9 Eb!K 9 ENTB PTZB ,SCAN T F  I N B  9 F I T B  T F A N B  9F AN2B 9 

1 PCMEB r C  MA NB ) 
DFEDT= ( F INB+FI TB-F INEN- FITEN)/ ( C O S  ( THTGI-COS ( THTB 1 
D F A D T = ( C O S ~ F A N B I - C O S ( F A N G )  11 ( C O S ( T H T G ) - C ~ S ( T H T B  I I 
D F 2  DT= (C OS ( FANZB )-COS ( FA NG2 

1 5 1  TRJAC =DFE DP*DFA DT*D F 2  DS +DFEDT*DFADS * DF2 DP-DFEDP:XDFADS *OF 2DT- 
1 DF EDT*DFA 0 P* DF2 DS 

FASE=PTGT**2/ TRJAC 
I F (  PTGT. EQ.0 .O 1 FASE=PTGTB**2 /TRJAC 

) / (C  OS ( THTG 1 -C OS ( THTB 1 

WR I TE ( 6 9 31 1 SC NA , FNGA 9 F I NEK FAA2A 9 F I T EK 9 TRJAC 9 FAS E 
3 1  FORMAT(2 ( F 7 . 2 ~ 3 X ) ~ F 9 . 4 ~ 1 X ~ F 7 . 2 r T X t F 9 o 4 t 2  ( 1 X ~ E 1 1 . 4 )  I 

I F ( S C A N o L T o S C A N M ) G O  TO 20 ' 

SCAN=SCA NO 
IF ( P T G T e E  
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I F  (THTG .L Tm THTGM ) G O  TO 19 
TWTG=JHTGO 
IF(PTGT,LT.ENKTM)GO TO 1 5  

100 CONTINUE 
GO TO 1 
END 



S U B R O U T I N E  M M U L T  ( A A  T A B  W A C  1 

T N P L I C I T  C O M P L E X * B I A  1 
C PROGRAM M U L T I P L I E S  THE 4 - r ) I M .  M A T R I C E S  A A (  I A v J A  1 AN0 AB ( I B T J B )  

D I M E N S I O N  A A ( 4 9 4 )  T A B ( ~ T ~ ) T A C ( ~ T ~ )  

DO 10 J R z 1 ~ 4  
AC 4 I A t J B  ) = A A  ( I A  9 1  )*AB (1  TJB ) + A A (  I A  92 ) * A B  ( 2 , J B  ) + A A  ( I A t 3 ) * A B (  3 r J B  )+ 

DO 10 I A = L , 4  

1 A A  ( I A  9 4  ) *AB (4vJB I 
10 C O N T I N U E  

R E T U R N  
E N D  



SlJBROUTINE NUCSYS (PTGTVENK tPBK ,BETFR,ENTGT,ENKC 3 
I MPL I C  I T  R E A L * 4  ( M) 
C OMMON MA S 1 N 9 MA S TG 9 MA S C L  7 MAS R 9 E N  I N  M EN I NT '9 E NMOV 9 P MC)V 9 B ET I t B E TM t 

1 P T T T H T V P N X  vPNZ,THN,PN, ENN, ET, PX9 E X t F I N M X  ,F I N M Z ?  PMf1MI 
2 TVKEL 

FNTGT=SQKT(  PTGT*hk2+MASCL**2 1 
ENHC=SBRT (PTGT**2+MASR**2 1 
VA R l  =MAS I N  **2 *MAS TG**2 +2 e 0  *MAS TG* EN I N M  
ADA=PTGT*~2+O05*(MASR**2=MASTG**2 . .2  .O*MAS IN**Z+MASCL**2)  

l -ENINMhkMASTG+ENTGT*€NRC 
ENK=( PMllM I + S O R T  ( A  IlA **2-VAR1 *MA S IN**2 )-ADA *EN I N T  I /  VAKL 
PR I< =S QR T ( E NK **2- MA S I N**CZ 1 
ENMOV=( ENINT**2-PMOMI**2- 2.0*ENTGT**2-MASR**2-2 0 O*ENTGT*ENRC+ 

l M A S C L  * *2 -MASIN**Z  I /  (Z,O*(ENTGT+ENRC) 1 
PMOV=SQRT (ENMOV**2=MAS IN* *2  1 
R E T I = PBK / E NK 
PETM=PMW/ENMOV 
P E T F R = ( R  ET  I - B E T M ) /  (1 eO-BETI*B ETM 1 
RETURN 
END 
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SUBROUTINE DISSOC ( P  TGT, THTG, BETFR, ENTGT ,ENRC P T Z t  P T X t  ENT I 
I M P L I C I T  R E A L * 4 ( M )  
COMMON MASIN,MASTG,MASCL,MASR,ENINM,ENI~T ,ENMOV?PMOV?BETI?BETM? 

1 P T  
2 TVREL 

THT 9 PNX 9 P N t  THN ,PN, ENN E T  9 PX EX F I NMX ,F I N M  Z p,PMOM I 

G A M = S Q R T ( l  c O / ( l e O - B E T F R * * 2  1 )  
PX=PMOV+B ETFR*GAM*r( G A M W E  
EX=SIORT( PX**2+MASIN**2 1 
PTZ=PTGT*COS(THTG )+BETFR* 

P T X = P T G T * S I N ( T H T G )  
PT=SORT(  PTZ**Z+PTX**2 f 

R*PMOV/ ( 1  .O+GA M)+ENMOV 1 

1 ENTGT f 

I F ( P T X c  EQ e 0  -0 eANDcPTZ e E Q c O  e 0  1 PTZZO e00001 
T H T = A T A N 2 ( P T X f P T Z )  
ENT=SQRT( PT**2+MASCL**2 1 
PNX=PTGT*S I N ( 3 e 1 4 1 5 9 3 + T H T G )  
PNZ=PTGT*COS ( 3.1 41 5 9 3 + T H T G 1  +BETFR*GAM*( GA M*BETFR*PTGT* 

I F ( PNX e EQ e 0  .O .A ND e 
THN=ATAN2( P N X v P N Z )  
PN=SQK T ( P  NZ**Z +PNX 
ENN=SQRT(PN**Z+MASR**2 1 
RETURN 
EPID 

1 C OS ( 3 o 14 1 5 9 3 +THTG 1 / ( 1 00 +GA M 1 + ENRC 1 
* )P 
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SUBROUTINE 

I M P L  I C  I T  COMPLEX*8(A  v R E A L * 4 (  M I  
COMMON 

S C A T T (  PTX, PBK ,ENK ,ENT,PTZ,SCAN ,F I N E N o F  I T E N ,  FANG, 
1 FA WG2 PC ME N 9 C MA N 

MAS I N  ,MASTG,MASCL ,MASR ,EN I N M p E N I N T ,  ENMOV, PMOV r B E  T I  T B E T M  9 

1 P T  ,THT, PNX, PNZ, THN, PNT ENN, ET,PX, EX ,F INMX, F I N M Z  ,PMOM I 
2,VREL 

1 AROT ( 494 1 ,AF I N M  ( 4 9  4)  ,A F I N T  (4, 4) 
D I M E N S I O N  A P K ( 4 , 4 ) , A P T ( 4 , 4 ) , A A ( 4 1 4 )  ,APKCM(4,4) T A P T C M ( ~ T ~ ) ~  

APTSC ( 4  9 4  I T A  PKSC ( 41 4 )  
RETAX=-PTX/ (ENK+ENT 1 
RETAZ=-(PRK+PTZ)/(ENK+ENT) 
R ETSO=B ETAZ**2 +B E TA X**2 
A PK ( 1 9 1 1 =(O a 0  90 a 0  1 
APK ( 2  TI ) = ~ O a O , O o O )  
P PK ( 3 v 1 1 = CMPL X (0 a 0  9 PBK 
A P K ( 4 r l  )=CMPLX(ENK,OaO) 
A P T ( 1 1 1 =C MP L X ( 0 a 0  P TX 1 
A P T  ( 2  9 1 I =  (0 a 0  10 a 0  1 
A P T ( 3 9 1 1 =C MP L X (0 a 0  P TZ 1 
A P T ( 4 r l  )=CMPLX(ENTqOoO 1 
DO 5 I p s 1 9 4  . 
DO 5 JP=2 ,4  
APK ( I P q J  P)=(O a 0  ,000 1 

5 A P T ( I P , J P ) = ( O a O , O a O )  
G A M M = l a O / S Q R T ( l  aO-BETSO) 
HA MM=GA MM-1 e 0  
INDEX=O 

10 AA ( 1  9 1  )=CMPLX (1 o O + H A M M * B E T A X * * Z / B E T S Q ~ O  a 0  ) 
AA ( 192 ) =  (0 e 0  ,O’aO 1 
AA ( 1 9 3 
A A ( 1 4 =C M P L  X ( 0 a 0  B 
A A ( 2 , I ) = ( O a O , O o O )  
AA ( 2  92 ) = ( I  a 0  10 00 1 
AA ( 2 9 3 ) = ( O m O T O a O  
AA ( 2  r 4 ) =  (0 a 0  90 a 0  1 
A A ( 3 , 1 ) = A A ( 1 , 3 )  
AA 4 372 )=(O 00 ,Om0 1 
AA ( 3 9 3 1 =C MPL X ( 1 e 0  +HAMM*B ETAZ** 
A A ( 3 
AA ( 4 9 1 I =C MPLX (0 -0 ,-BETA X*GA MM 1 

=C MPLX ( B ETAX*B ETAZaHA MM/B ETS Q 90 a 0  

4 1 =C M P L  X ( 0 00 6 E TA I * GA MM 1 

AA t 492 ) = ( O  a 0  90 a 0  1 
AA ( 4 9 3  )=CMPLX (0 00 ,-RETAZ*GAMM) 
AA ( 4 9 4  )=CMPL X (GAMM 90 a 0  
I F ( I N D E X a E Q r 1 )  GO T O  20 
C A L L  MMUL T ( A A  ,A PK TAPKC M 
C A L L  MMULT(AA ,APT,APTCM) 
PCMENzREAL ( A P K C M ( 4 9 1  1 )+REA 
P K C M X = A I M A G ( A P K C M ( ~ T ~ ) )  
PKCMZ=AIMAG(APKCM(3 ,1 ) )  , 
I F ( PKC MX 0 EQ 00 00 .A NO ePKC MZ 0 EQ rO a 0  ) PKC MZ= 00 0001 
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CMAN=ATAN2(PKCMX,PKCMZ 
V E E l = ( S Q R T ( P K C M X * * 2 + P K C M Z * * 2  ) / R E A L ( A P K C M ( 4 9 1  I 
VEE2=(SBRT(PKCMX**2+PKCMZ**2  ) ) / R E A L ~ A P T C M ~ ~ T ~ ) )  
V R E L = ( V E E l + V E E 2  ) / ( l o O + V E E l * V E E Z )  
A R O T ( 1  * l ) = C M P L X ( C O S  ( S C A N )  ,000) 
A R n T ( 1 9 2  ) = ( O  00 90 00 
A R O T (  1 9 3 )  4 M P L X  ( S I N  ( S C A N )  9000 1 
A R O T ( l t 4 ) = ( 0 e 0 9 0 . 0  1 
A R O T ( 2  9 1 ) = ( O  00 90 e 0  1 
A R O T ( 2 9 2  ) = ( 1  00,000 1 
A R O T ( 2  9 3 M O e O  9000 1 
A R O T ( 2  9 4  ) = ( O  e 0  90.0 1 
A R O T  ( 3  9 1) =CMPLX (0s  I N (  S C A N  
A R O T ( 3 9 2  ) = ( O e O , O o O  
A R O T  ( 3 9 3 
A K O T (  394  ) =  (0 e 0  90 00 1 
A R O T ( 4 . 1 )  = ( O e O  90 00 I 
A R O T ( 4 . 2  ) = ( 0 0 0 9 0 0 0 )  
A R O T ( 4 9  3 ) = ( 0 0 0  90.0 1 
A R O T ( 4 r 4 ) = ( 1 0 0 , 0 . 0 )  
C A L L  MMUL T { AROT ? A  PKC M ,A PK SC 1 
C A L L  MMOLT ( A R O T r A P T C M q A P T S C  1 
R E T A  X =-B E TA X 
B E T A 2 z - B  E T A 2  
I N D E X = l  
GO T O  10 

90 e 0  

9 0  00 I =C M P L  X (C OS 4 S C A  N 

20 C O N T I N U E  a 

C A L L  MMCILT ( A A  9 A P K S C  9 A F I N M )  
CALL M M C L T t A A  9 A P T S C  t A F I N T )  , 

, F I N M X = A I M A G ( A F I N M ( l , l ) )  
F I N M Z = A I M A G ( A F I N M ( 3 , 1  1 )  
F I N E N = R E A L  ( A F I N M ( 4 . 1  1 )  
F I N T X = A I M A G ( A F I N T ( l ~ l )  1 
F I N T t = A I M A G ( A F I N T ( 3 , 1 ) )  
F I T E N = R E A L ( A F I N T ( 4 , 1 ) )  
F A N G z A T A N 2  ( F I N M X 9 F I N M Z )  
F A N G 2 z A T A N 2  ( F I N T X v f  I N T Z )  
R E T U R N  
END. 


